ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors.

نویسندگان

  • B K Ray
  • T G Lawson
  • J C Kramer
  • M H Cladaras
  • J A Grifo
  • R D Abramson
  • W C Merrick
  • R E Thach
چکیده

Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with 32P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or "unwind" mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. Our results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase

Eukaryotic translation initiation is a highly regulated process in protein synthesis. The principal translation initiation factor eIF4AI displays helicase activity, unwinding secondary structures in the mRNAs 5'-UTR. Single molecule fluorescence resonance energy transfer (sm-FRET) is applied here to directly observe and quantify the helicase activity of eIF4AI in the presence of the ancillary R...

متن کامل

The ATP-dependent interaction of eukaryotic initiation factors with mRNA.

The interaction of three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F, with mRNA has been examined. Three assays specifically designed to evaluate this interaction are RNA-dependent ATP hydrolysis, retention of mRNAs on nitrocellulose filters, and cross-linking to periodate-oxidized mRNAs. The ATPase activity of eIF-4A is only activated by RNA which ...

متن کامل

Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase

The unwinding of nucleic acid secondary structures within cells is crucial to maintain genomic integrity and prevent abortive transcription and translation initiation. DHX36, also known as RHAU or G4R1, is a DEAH-box ATP-dependent helicase highly specific for DNA and RNA G-quadruplexes (G4s). A fundamental mechanistic understanding of the interaction between helicases and their G4 substrates is...

متن کامل

Molecular Dynamics Simulation of the Allosteric Regulation of eIF4A Protein from the Open to Closed State, Induced by ATP and RNA Substrates

BACKGROUND Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5' proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to pro...

متن کامل

Adenosine 5 -O-(3-thio)triphosphate (ATP S) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A

Whereas ATP S is often considered a nonhydrolyzable substrate for ATPases, we present evidence that ATP S is a good substrate for the RNA-stimulated nucleotide hydrolysis and RNA unwinding activities of eIF4A. In the presence of saturating single-stranded poly(U) RNA, eIF4A hydrolyzes ATP S·Mg and ATP·Mg with similar steady-state parameters (KM NTP·Mg = 66 and 58 μM and kcat = 1.0 and 0.97 min ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 12  شماره 

صفحات  -

تاریخ انتشار 1985